-
djtux
-
Autore della discussione
-
Offline
-
Referente Yoyo@home
-
-
Messaggi: 573
-
Ringraziamenti ricevuti 2
-
-
-
-
|
Informazioni Generali
(Traduzione dal sito ufficiale:
www.primegrid.com
)
LINK al nostro team BOINC.Italy:
www.primegrid.com/team_display.php?teamid=774
I numeri primi sono di grande interesse per i matematici per tante ragioni.
I numeri primi giocano un ruolo centrale anche nei sistemi crittografici, i quali sono usati per la sicurezza dei computers. Attraverso lo studio dei numeri primi sarà nota la quantità di lavoro necessaria per decifrare un codice crittografato e così sarà possibile valutare se gli attuali sistemi di sicurezza sono sufficientemente affidabili.
PrimeGrid attualmente gestisce alcuni sotto-progetti:
# 321 Prime Search: cerca i Mega numeri primi della forma 3*(2^(n^(A+-1))).
# AP26 Search: cerca una Progressione Aritmetica di 26 numeri primi.
# Cullen-Woodall Search: cerca i Mega numeri primi della forma (n*2^n) + 1 e (n*2^n) - 1.
# Prime Sierpinski Project: aiuta il Progetto sui Primi di Sierpinski a risolvere il
Problema di Sierpinski
.
# Proth Prime Search: cerca i numeri primi della forma (k*2^n)+1.
# Twin Prime Search: cerca i numeri primi Giganti e i numeri primi Gemelli della forma (k*2^n) + 1 e (k*2^n) - 1.
Puoi scegliere i progetti a cui vuoi contribuire andando nella pagina delle preferenze del progetto del tuo account.
Le Gare di PrimeGrid
Client disponibili
Sophie Germain Prime Search (LLR):
- 6.09 per Windows dal 98 in poi, 32 bit.
- 6.09 per Linux, 32 bit.
- 6.09 per Mac OS dal 10.4 in poi, Intel.
Woodall Prime Search (LLR):
- 6.09 per Windows dal 98 in poi, 32 bit.
- 6.09 per Linux, 32 bit.
- 6.09 per Mac OS dal 10.4 in poi, Intel.
Cullen Prime Search (LLR):
- 6.09 per WIndows dal 98 in poi, 32 bit.
- 6.09 per Linux, 32 bit.
- 6.09 per Mac OS dal 10.4 in poi, Intel.
Cullen/Woodall Prime Search (Sieve):
- 1.01 per Windows dal 98 in poi, 32 bit.
- 1.12 per Windows dal 98 in poi, 32 bit, CUDA23.
- 1.12 per Windows, 64 bit.
- 1.12 per Linux, 32 bit.
- 1.12 per Linux, 32 bit, CUDA23.
- 1.12 per Linux, 64 bit.
- 1.12 per Linux, 64 bit, CUDA23.
- 1.12 per Mac OS dal 10.3 in poi, Motorola PowerPC.
- 1.12 per Mac OS dal 10.4 in poi, Intel.
- 1.12 per Mac OS dal 10.4 in poi, Intel, CUDA23.
- 1.12 per Mac OS 10.5+, Intel 64 bit.
- 1.12 per Mac OS 10.5+, Intel 64 bit, CUDA23.
Prime Sierpinski Problem (Sieve):
- 1.12 per Windows dal 98 in poi, 32 bit.
- 1.12 per Windows, 64 bit.
- 1.02 per Linux, 32 bit.
- 1.07 per Linux, 64 bit.
- 1.02 per Mac OS dal 10.4 in poi, Intel.
- 1.02 per Mac OS 10.5+, Intel 64 bit.
321 Prime Search (LLR):
- 6.09 per Windows dal 98 in poi, 32 bit.
- 6.09 per Linux, 32 bit.
- 6.09 per Mac OS dal 10.4 in poi, Intel.
Prime Sierpinski Problem (LLR)
- 6.09 per Windows dal 98 in poi, 32 bit.
- 6.09 per Linux, 32 bit.
- 6.09 per Mac OS dal 10.4 in poi, Intel.
Proth Prime Search (Sieve):
- 1.38 per Windows dal 98 in poi, 32 bit.
- 1.38 (ati13ati) per Windows dal 98 in poi, 32 bit.
- 1.38 (cuda23) per Windows dal 98 in poi, 32 bit.
- 1.38 per Windows, 64 bit.
- 1.38 per Linux, 32 bit.
- 1.38 (ati13ati) per Linux, 32 bit.
- 1.38 (cuda23) per Linux, 32 bit.
- 1.38 per Linux, 64 bit.
- 1.38 (ati13ati) per Linux, 64 bit.
- 1.38 (cuda23) per Linux, 64 bit.
- 1.38 per Mac OS dal 10.4 in poi, Intel.
- 1.38 (cuda31) per Mac OS dal 10.4 in poi, Intel.
- 1.38 per Mac OS 10.5+, Intel 64 bit.
- 1.38 (cuda31) per Mac OS 10.5+, Intel 64 bit.
PPS LLR:
- 6.09 per Windows dal 98 in poi, 32 bit.
- 6.09 per Linux, 32 bit.
- 6.09 per Mac OS dal 10.4 in poi, Intel.
321 Prime Search (Sieve):
- 1.13 per Windows dal 98 in poi, 32 bit.
- 1.13 per Windows, 64 bit.
- 1.02 per Linux, 32 bit.
- 1.07 per Linux, 64 bit.
- 1.02 per Mac OS dal 10.4, Intel.
- 1.02 per Mac OS 10.5+, Intel 64 bit.
Seventeen or Bust:
- 6.09 per Windows dal 98 in poi, 32 bit.
- 6.09 per Linux, 32 bit.
- 6.09 per Mac OS dal 10.4 in poi, Intel.
The Riesel Problem (Sieve):
- 1.12 per Windows dal 98 in poi, 32 bit.
- 1.12 per Windows, 64 bit.
- 1.02 per Linux, 32 bit.
- 1.07 per Linux, 64 bit.
- 1.02 per Mac OS dal 10.4 in poi, Intel.
- 1.02 per Mac OS 10.5+, Intel 64 bit.
The Riesel Problem (LLR):
- 6.09 per Windows dal 98 in poi, 32 bit.
- 6.09 per Linux, 32 bit.
- 6.09 per Mac OS dal 10.4 in poi, Intel.
Stato dei server
Screensaver disponibili:
[img=http://img240.imageshack.us/img240/6369/screenshottpsscreensavexj6.th.jpg]
Applicazione: LLR (TPS).
Presto verranno implementati nuovi progetti:
Over the past nine months, six new projects (4 primality and 2 sieves) have been added to PrimeGrid. As mentioned in this post, "the primary focus was on simplicity...how easily could a new sub-project be implemented within PrimeGrid and BOINC."
We will soon be adding three new projects...all primality testing (LLR). Simplicity of implementation is still a driving factor right now. However, we may explore adding other primality programs in the future and add prime searches with increasing variety.
Sieving was conducted over the past several months and has been completed for the first project and ongoing for the other two projects.
Sophie Germain Prime Search
A prime number p is called a Sophie Germain prime if 2p + 1 is also prime. For example, 5 is a Sophie Germain prime because it is prime and 2 × 5 + 1 = 11, is also prime. They are named after Marie-Sophie Germain, an extraordinary French mathematician.
We'll be searching the form k*2^n-1. If it is prime, then we'll check k*2^n+1, k*2^(n-1)-1, & k*2^(n+1)-1. We are able to do this because a quad sieve was performed for this search. This sieve ensured that k*2^n-1, k*2^n+1, k*2^(n-1)-1, & k*2^(n+1)-1 do not have any small prime divisors.
As you can see, a twin prime is also possible from this search although we expect to find a Sophie Germain prime first. Here are some stats for the search:
k range: 1<k<41T
n=666666
sieve depth: p=200T
candidates remaining: 34,190,344
Probability of one or more significant pair = 80.1%
Probability of one or more SG = 66.7%
Probability of one or more Twin = 42.3%
Approximate WU length:
Athlon64 2.1Ghz - ~2000 secs (~33.3 minutes)
C2D 2.1 Ghz - ~1015 secs (~16.9 minutes) per core
C2Q 2.4 GHz - ~880 secs (~14.7 minutes) per core
Primes found in this search will enter the Top 5000 Primes database ranked about 600.
For more information about Sophie Germain primes, please visit these links:
primes.utm.edu/glossary/page.php?sort=SophieGermainPrime
mathworld.wolfram.com/SophieGermainPrime.html
en.wikipedia.org/wiki/Sophie_Germain_prime
For more infomation about Marie-Sophie Germain, please visit these links:
en.wikipedia.org/wiki/Sophie_Germain
www.pbs.org/wgbh/nova/proof/germain.html
3*2^n+1
This will be a sister project to the already established 3*2^n-1 project. We hope to eventually have both projects at the same n value. We have reserved k=3 from the ProthSearch site. Our initial goal will be like 3*2^n-1, tested up to n=5M. However, sieving is currently being conducted beyond that.
Here are some stats for the search:
k=3
sieved n range: 1<n<5M
sieve depth: p=500T (ongoing)
3*2^n+1 will be a double check effort for even n up to ~1.8M and for odd n up to ~2.6M. Beyond that will be new primes, although there may be a small chance of a missed prime in the lower ranges.
+1 Prime Search
This search will be looking for primes in the form of k*2^n+1. With the condition 2^n > k, these are often called the Proth primes. We will be coordinating our effort through the ProthSearch site. This project will also have the added bonus of possibly finding Generalized Fermat Numbers (GFN) factors. Each k*2^n+1 prime found may be a GFN factor. As this requires PrimeFormGW (PFGW) (a primality-testing program), once PrimeGrid finds a prime, it will then be manually tested outside of BOINC for GFN divisibility.
Our initial goal will be to double check all previous work up to n=300K for k<1200 and to fill in any gaps that were missed. Primes found in this range will not make it into the Top 5000 Primes database (currently n>333333). However, the work is still important as it may lead to new GFN factors. Currently there are only about 250 such factors known.
Here are some stats for the search:
k range: 4<k<1200
n range: 1<n<5M
sieve depth: currently at p=10T (ongoing)
Once the initial goal is reached, we'll advance to n<400K and then n<500K. Afterwards, we'll turn our focus to smaller k values and higher n values. For example, k<32 complete to n=2M, k<64 complete to n=1M and so on. Primes found in these ranges will definitely make it into the Top 5000 Primes database.
For more information about "Proth" primes, please visit these links:
primes.utm.edu/glossary/page.php?sort=ProthPrime
mathworld.wolfram.com/ProthPrime.html
en.wikipedia.org/wiki/Proth_number
Other suggestions for future projects
Generalized Cullen/Woodall Search: This is similar to our current Cullen/Woodall search except a base other than 2 will be selected. The form of these primes are as follows:
Generalized Cullen: n*b^n+1
Generalized Woodall: n*b^n-1
One base in particular, b=13, is interesting as no prime has yet to be found although it has been tested up to n=250K.
There are ongoing efforts here:
Steven Harvey's Generalized Woodall number Search
Günter Löh's Generalized Cullen Search for 3 <= b <= 100
Daniel Hermle's Generalized Cullen Search for 101 <= b <= 200
Hyper Cullen/Woodall: Again, similar to our current Cullen/Woodall search. The form of these primes are as follows:
HyperCullen: k^n*n^k+1, k>n
HyperWoodall: k^n*n^k-1, k>n
There is an ongoing effort here: Steven Harvey's Generalized Woodall number Search
Generalized Fermat Prime Search: This searches for primes in the form b^2^n+1. A previous project has already completed a substantial amount of work. It can be found here: Generalized Fermat Prime Search. We may be able to double check all completed work and then help the previous project extend their search.
Wieferich prime: There is now an established effort for this search which can be found here: www.elmath.org/
Octoproth Search: There was an effort, but it is now on hiatus due to lack of interest. It can be found here: mersenneforum.org/forumdisplay.php?f=63
Riesel and Sierpinski conjectures: There are two well known projects already established...Riesel Sieve and Seventeen or Bust. There is now an established effort for bases other than 2 which can be found here: mersenneforum.org/showthread.php?t=9738
La notizia si può leggere sul forum di PrimeGrid a questo indirizzo:
www.primegrid.com/forum_thread.php?id=862#8338
|